
Vol:.(1234567890)

European Spine Journal (2021) 30:3428–3441
https://doi.org/10.1007/s00586-021-06990-2

1 3

REVIEW ARTICLE

Paraspinal muscle imaging measurements for common spinal 
disorders: review and consensus‑based recommendations 
from the ISSLS degenerative spinal phenotypes group

Paul W. Hodges1  · Jeannie F. Bailey2  · Maryse Fortin3  · Michele C. Battié4 

Received: 9 July 2021 / Revised: 12 August 2021 / Accepted: 5 September 2021 / Published online: 20 September 2021 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
Purpose Paraspinal muscle imaging is of growing interest related to improved phenotyping, prognosis, and treatment of 
common spinal disorders. We reviewed issues related to paraspinal muscle imaging measurement that contribute to incon-
sistent findings between studies and impede understanding.
Methods Three key contributors to inconsistencies among studies of paraspinal muscle imaging measurements were 
reviewed: failure to consider possible mechanisms underlying changes in paraspinal muscles, lack of control of confound-
ing factors, and variations in spinal muscle imaging modalities and measurement protocols. Recommendations are provided 
to address these issues to improve the quality and coherence of future research.
Results Possible pathophysiological responses of paraspinal muscle to various common spinal disorders in acute or chronic 
phases are often overlooked, yet have important implications for the timing, distribution, and nature of changes in paraspinal 
muscle. These considerations, as well as adjustment for possible confounding factors, such as sex, age, and physical activity 
must be considered when planning and interpreting paraspinal muscle measurements in studies of spinal conditions. Adop-
tion of standardised imaging measurement protocols for paraspinal muscle morphology and composition, considering the 
strengths and limitations of various imaging modalities, is critically important to interpretation and synthesis of research.
Conclusion Study designs that consider physiological and pathophysiological responses of muscle, adjust for possible con-
founding factors, and use common, standardised measures are needed to advance knowledge of the determinants of variations 
or changes in paraspinal muscle and their influence on spinal health.

Keywords Imaging · Paraspinal muscles · Multifidus · Magnetic Resonance Imaging · Ultrasound

Introduction

There is growing interest to improve the contribution of phe-
notyping based on paraspinal muscle imaging to the prog-
nosis and treatment guidance of common spinal conditions. 

Recent reviews have investigated the association between 
imaging-based spinal muscle phenotypes and spinal dis-
orders, including non-specific low back pain (LBP), neu-
rocompressive conditions, and physical function in older 
adults [1–6], but findings are conflicting and inconclusive.

Beyond differences between study samples, inconsistent 
results between studies have several possible methodological 
explanations, including different approaches to paraspinal 
muscle measurements and variable control of confounding 
factors. Such methodological variations limit study compari-
sons and meta-analyses and have led to calls for the adop-
tion of uniform measurement techniques [1, 3, 7]. Further, 
study design and interpretation require consideration of the 
physiological mechanisms associated with changes in spi-
nal muscles. These differ between spinal conditions and can 
affect the distribution, timing, and nature of muscle changes 
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and require careful consideration when selecting appropriate 
measurement sites and measures.

Refinement of study design and measures will be nec-
essary to advance knowledge of the determinants of vari-
ation or changes in paraspinal muscle and their influence 
on back health and function. Towards this goal, this paper 
reviews three key sources of inconsistencies among stud-
ies of paraspinal muscle measurements in spinal conditions 
(excluding neuromuscular disorder/muscular dystrophies) 
that require attention, including the failure to: (1) consider 
possible mechanisms underlying changes in paraspinal mus-
cles; (2) control for confounding factors; and (3) standardise 
spinal muscle imaging modalities and protocols for measure-
ment of muscle size, composition, and asymmetry.

Physiology and pathophysiology 
of paraspinal muscle changes with LBP 
and other spine conditions

Interpretation of muscle imaging requires an understanding 
of the possible mechanisms underlying muscle changes with 
LBP, as these mechanisms influence the distribution, timing, 
and nature of any changes (Table 1). Recent animal and 
human studies have begun to unravel some of the complexi-
ties. Much of the work focuses on the multifidus muscle.

An understanding of the distribution of paraspinal mus-
cle changes requires consideration of muscle anatomy and 
innervation. Multifidus, in which there is particular interest, 
arises from the spinous process, lamina, and mammillary 
process of the lumbar vertebrae (Fig. 1). The deep fascicles 
descend over two lumbar intervertebral segments. More 
superficial fascicles cross up to five segments [8]. All fibres 
arising from a spinal segment are innervated by that level’s 
nerve root [8]. Thus, single-level denervation could influ-
ence fascicle bundles within the muscle’s cross-sectional 
area up to 5 levels below. Findings localised to a single 
level would likely involve the deeper short muscle fascicles. 
Findings at multiple levels could be mediated by changes 
to long fascicles that arise from a single segment, or from 
mechanisms that affect multiple levels simultaneously (e.g., 
disuse).

Pathophysiology of multifidus muscle 
changes in LBP, pathology, and injury

Neural mechanisms

Several neural mechanisms have been proposed, each with 
different implications for the distribution, timing, and nature 
of changes (Table 1; Fig. 1).

Reflex inhibition (inhibition of motoneurones mediated 
by afferent input from joint injury) has been extensively 
studied in peripheral joints (e.g., knee). It particularly 
involves extensor muscles [9] at a single spinal segment 
[10]. Effects can be prolonged (> 2 weeks) [11] and can 
occur in the absence of pain [12]. Immediately after 
intervertebral disc (IVD) injury in animals, the response 
of multifidus to electrical stimulation at the spinal cord 
is reduced but increased to motor cortex stimulation. 
Together these observations imply reflex inhibition at a 
spinal level [13]. Animal experiments highlight a bias 
to inhibition of deep fascicles of multifidus [13], which 
explains localised acute muscle atrophy in humans [14] 
and animals [15](Fig. 1).

Denervation results from motor axon compression/
damage secondary to neurocompressive conditions of 
the intervertebral foramen or spinal canal, such as spinal 
stenosis [16] and IVD herniation [17], or iatrogenically 
from radiofrequency ablation of the dorsal ramus which 
provides sensory innervation to the facet joint in addi-
tion to motor innervation to multifidus. It is segmental 
and specific [18] and causes metabolic and morphological 
muscle changes (e.g. atrophy) leading to replacement of 
muscle with fat and connective tissue [19]. Denervation is 
demonstrated by reduced neural drive [20] and histological 
evidence of reinnervation of muscle fibres (e.g. clusters 
of muscle fibres of the same type caused by sprouting to 
reinnervate fibres [21]). Because all fibres of multifidus 
arising from a vertebra are innervated by the spinal nerve 
root from that level [8], denervation would induce mus-
cle changes over multiple levels, on the side of the nerve 
root. This distribution occurs after nerve transection in 
animals [15]. Over time, if reinnervation occurs, changes 
can resolve [20]. In non-spinal musculoskeletal com-
plaints, distribution of fat and atrophy can differ between 
muscle changes mediated by denervation and disuse [22]. 
Denervation-induced muscle changes may occur along 
with pain but are not caused by pain.

Modified motor control involves altered functioning of 
spinal/supraspinal sensorimotor circuits. Individuals with 
chronic and recurrent LBP have a variety of changes in 
back muscle activation that depend on the patient, time 
course, and task, with reduced or delayed multifidus acti-
vation being common [23, 24]. Some differences relate to 
posture [25] or movement [26], and neurophysiological 
features, such as organisation of the muscle’s representa-
tion on the motor cortex [27] and modified brain inhibi-
tory/excitatory mechanisms [28]. Changes differ between 
individuals, may be specific to subgroups with specific 
clinical features [25], and can be localised or diffuse. In 
acute LBP, multifidus activation can be decreased [29] or 
increased [30]. Changes in other paraspinal muscles are 
also variable [31].
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Disuse/muscle unloading mechanisms

Disuse induces muscle structural change including atrophy 
[32–34] and fat accumulation [35]. Reduced muscle loading/
stretch upregulates adipogenic transcription factors [36] and 
reduces expression of factors that inhibit myoblast trans-
differentiation to adipocytes [37]. Disuse results from gener-
alised inactivity [38], pain, or from postures and movements 
that shift load from the multifidus to other back muscles 
[39]. Disuse-mediated changes in multifidus would be more 
diffuse than changes caused by other mechanisms described 
here.

Inflammatory mechanisms

Recent work has highlighted that injury to spine struc-
tures can lead to increased expression of pro-inflammatory 
cytokines in multifidus [40–42]. These cytokines can cause 
structural changes in multifidus as observed in animal stud-
ies [40–42], and in human muscle samples [43, 44]. Pro-
inflammatory cytokines have diverse biological functions 
and, depending on the cytokine and their interaction, can 
lead to muscle atrophy (e.g. tumour necrosis factor [TNF] 
promotes atrophy [45], protein loss [46], and muscle 

fibre-type transformation, leading to preferential fast fibre 
differentiation [47], fibrosis, and fat accumulation [48]). 
Inflammation-mediated muscle changes are common in 
other chronic diseases [46], but their association with mus-
culoskeletal pain and injury is a recent observation [40, 44]. 
Cytokine expression in LBP/injury may arise from polarisa-
tion of macrophages to the pro-inflammatory M1 type [42], 
and the accumulation of fat, which is a potent source of 
cytokines [42].

Involvement of inflammatory mechanisms has important 
implications for the temporal and spatial features of muscle 
changes. Inflammatory changes can begin in the subacute 
period [40, 41] and become established by 6 months [40, 
41]. Changes begin in a localised manner, on the side and 
level of injury, but then become more diffuse. Inflamma-
tory mechanisms may occur in response to injury, develop 
in parallel, or even sensitise the nervous system to provoke 
pain [49].

Other mechanisms

Other mechanisms for changes in muscle structure are also 
plausible (e.g., modified afferent input from muscle spin-
dles). More generally, spinal muscle fat accumulation and/or 

A B C

D Denerva on E Reflex inhibi on F Unloading/Disuse

Fig. 1  Anatomy of the multifidus muscle and distribution of muscle 
changes with different mechanisms for dysfunction. (a). Anatomy 
of fascicles of the multifidus muscle arising from the spinous pro-
cess and lamina of L3 is shown on the right side of the spine (top). 
The left (bottom) shows a fascicle bundle that arises from the side of 
the spinous process of L4. Fibres cross 2–5 segments. All fascicles 
arising from L3 are innervated by the spinal nerve root of the same 
number. (b). Cross section of multifidus through the middle of the L4 
spinous process. Colours identify the same fibres as shown in panel 
A and C. Note the fascicle bundle closest to the spinous process (yel-
low) arises from the from the side of the L4 spinous process, whereas 

all other coloured fascicles arise from L3. (c). Top shows all fasci-
cles from L3, and bottom shows all fascicles from L4. (d). Expected 
distribution of muscle changes from denervation of the L3 nerve 
root (shown in grey). Atrophy will be expected to involve all mus-
cle fascicles arising from L3, which occupy different locations in the 
cross-sectional view at each level. E. Expected distribution of muscle 
changes from reflex inhibition involving the L3 spinal level (shown 
in grey). Evidence suggests most involvement of the shortest fibres 
with muscle bulk at a single level. F. Expected distribution of muscle 
changes from unloading/disuse. This would be expected to be gener-
alised and involve all muscle fascicles (shown in grey)
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atrophy occurs with ageing [50], similar to muscle changes 
observed throughout the body. It is critical to consider 
whether changes related to pain are distinct from age-related 
changes. Some data show independent associations of fat 
with pain and age [51], but not always in both sexes [52].

Implications of pathophysiology 
for multifidus imaging findings in LBP 
and injury

These various proposed pathophysiological mechanisms 
have implications for the timing, distribution, and nature of 
muscle changes studied in relation to common spinal dis-
orders. Differences in the time course and spatial distribu-
tions of muscle changes between pathologies and individuals 
imply that there is unlikely to be a single imaging-based 
biomarker of muscle change for all patients with different 
pain phenotypes/spinal disorders.

As mechanisms for muscle changes are time-dependent 
(Table 1), what changes are observed (atrophy, fat accumu-
lation, connective tissue changes) and where changes are 
observed (localised, diffuse, unilateral) depending on when 
images are acquired and the primary mechanism mediating 
changes for the individual (Fig. 1). In acute LBP, muscle 
atrophy (reduced muscle cross-sectional area (CSA)) may be 
observed at a single level on one side [14, 15], but this would 
involve multiple segments with denervation [15]. If the acute 
episode is superimposed on ongoing recurring symptoms, 
changes could be more diffuse or less apparent [53].

In subacute LBP, muscle size may be unaffected (after 
resolution of inhibition/denervation), but structural changes 
may be characterised by increased fat CSA [54]. In chronic 
LBP, changes can be diffuse, characterised by fat accumula-
tion and muscle atrophy. However, this may differ between 
individuals because of differences in typical postures and 
movement, which may influence use/disuse.

A major issue that impacts variability of results is that 
most chronic LBP cases are considered to be “non-spe-
cific” without a diagnosis [55]. Within this group, there 
will be a variety of mechanisms (each may have unique 
features and distribution of muscle change), variety of spi-
nal levels involved, and variation in time course, which 
will all impact the muscle imaging findings. Not surpris-
ingly, meta-analyses of imaging studies using patients with 
non-specific LBP revealed inconsistent results between 
studies for paraspinal muscle CSA and composition [3, 4]. 
When the underlying location/level expressing pathology 
is unclear, average paraspinal muscle CSA and composi-
tion measurements acquired for the entire lumbar spine 

(L1-S1) have been used. This has revealed associations 
with IVD degeneration and Modic changes [51, 56]. Given 
the uncertain pathophysiology of non-specific LBP, studies 
should include paraspinal muscle measurements for both 
whole spine and an individual spinal level, if possible.

Rehabilitative exercise training 
and imaging‑based measures of paraspinal 
muscles

Effects of paraspinal muscles training on image-based 
measures might depend on the timing, the underlying 
mechanism, and the structural feature being targeted. 
Acute atrophy has a different mechanism to chronic atro-
phy. Gentle precise activation of multifidus appeared suffi-
cient to overcome acute inhibition and restore muscle CSA 
in one study [57], but in another did not restore muscle 
CSA when structural changes had developed over years 
[58]. In chronic LBP, initial training to ensure muscle 
engagement followed by application of principles of mus-
cle overload for hypertrophy induces recovery [58]. This is 
supported by work that showed increased CSA of multifi-
dus and erector spinae when training of motor control was 
combined with resistance training, but only erector spinae 
CSA increased when resistance was used without training 
of muscle activation patterns/motor control [59]. Cardio-
vascular fitness training has not been found to increase 
multifidus CSA [60].

Animal studies show that whole body physical activ-
ity reduces muscle inflammatory changes [61] and fibro-
sis, but not completely [62]. In other tissues, short-term 
exercise stimulates collagen synthesis and degradation to 
assist remodelling [63], and long-term exercise prevents 
ageing-dependent fibrosis [64]. This anti-fibrotic effect 
may be partly explained by exercise-induced reduction of 
inflammation [65].

Some early studies of muscle fat estimated from com-
puted tomography (CT) showed reduction with resistance 
training [66]. Magnetic resonance imaging (MRI) of cervi-
cal spine muscles showed changes in proportion of fat and 
muscle, but it was unclear whether this was explained by 
greater muscle or less fat [67].

Most training studies have not considered temporal 
and spatial differences with pathology/pathophysiology, 
which makes interpretation difficult. As interpretation of 
imaging-based muscle measures in exercise studies will 
depend on the timing, underlying mechanisms and tissues 
targeted, this must be considered and recorded.
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Potential Confounders For Interpretation 
Of Imaging‑Based Measures Of Paraspinal 
Muscles

Conflicting evidence from separate clinical studies cloud an 
association between LBP and paraspinal muscle imaging 
findings [1, 3, 4]. Variation in study samples and confound-
ing factors might explain many of these differences.

Individual‑specific physiologic factors

Age- and sex-related effects on imaging-based measures 
of paraspinal muscles are well established [51, 68–70]. 
Age-induced muscle atrophy (sarcopenia) creates a time-
dependent natural decline in muscle CSA and fat infiltration 
of paraspinal muscle [71]. Compared to males, females have 
more paraspinal fat and smaller muscle CSA [68] and may 
have greater fat infiltration in relation to spinal pathology 
when compared with sex-matched controls [50]. Age and sex 
need to be equally represented in study groups or statistically 
adjusted to mitigate confounding.

Body fat or body mass index does not consistently associ-
ate with higher paraspinal fat infiltration [52, 69, 72], and its 
role as a possible confounder of the relation between com-
mon spinal disorders and paraspinal muscle measurements 
is unclear. In contrast, greater aerobic fitness and physical 
activity levels associate with better paraspinal muscle qual-
ity (less fat infiltration) [73, 74]. This is an important con-
sideration in studies of chronic LBP and paraspinal muscle 
given the negative effects of pain and disability on physical 
activity. Experimentally, paraspinal muscle activity has been 
reduced by prolonged bed rest (inactivity) or spaceflight 
(reduced axial loading, but maintained physical activity), 
with an associated reduction in paraspinal muscle CSA, 
increased fat content, and a possible relationship with LBP 
[34, 75, 76]. Although the exposure to loading and physical 
activity can be challenging to assess, these issues should be 
considered as a possible confounder.

Spinal pathology and symptoms

Imaging features of paraspinal muscle health are expected 
to vary with underlying spinal pathology, specific symptoms 
(e.g., sciatica), and associated disability. Thus, consideration 
should be given to co-existing spinal pathology and symp-
toms as possible confounders depending on the study ques-
tion or relation of interest.

Consistent with the underlying role of denervation in 
some muscle changes, paraspinal muscle changes have been 

associated with specific neurocompressive spinal conditions, 
such as IVD herniation [21, 77], spinal stenosis [78–80], 
spondylolisthesis [81], and facet osteoarthritis [82]. Yet, meta-
analyses of imaging studies reveal inconsistent changes in 
muscle CSA and note that variability in spinal locations from 
which measurements were collected is problematic [1]. This 
coincides with the notion, described above, that denervation 
induces a specific pattern of muscle atrophy, and findings will 
be inconsistent if measurements do not capture the correct lev-
els. More uncertainty surrounds the effect of spinal pathology 
that can underly non-specific (localised) LBP and the relation-
ship with paraspinal muscle imaging phenotypes. Although 
numerous studies show an association between paraspinal 
muscle imaging phenotypes and non-specific LBP [83–85], 
the underlying mechanisms are unclear. Features that are con-
sidered to associate with non-specific LBP often include struc-
tural abnormalities and degeneration localised to the vertebral 
bodies and IVDs, including disc degeneration [51, 56], Modic 
changes [86], and structural endplate pathologies [87].

These findings highlight that measurement and sampling 
of the paraspinal muscles from imaging may need to account 
for the location of suspected spinal pathology and how dif-
ferent types of pathology may have differential effects on the 
global patterns of paraspinal muscle health.

Importance of characterising 
the asymptomatic paraspinal muscle 
phenotype

Characterising paraspinal muscle in healthy or asymptomatic 
individuals provides an important reference for findings in 
painful spinal conditions. Spinal degeneration worsens with 
age and can be present in otherwise asymptomatic individu-
als [88, 89]. As highlighted above, paraspinal muscles also 
naturally atrophy with age [69, 71]. Whether muscle changes 
are causally related to asymptomatic degeneration is unclear, 
and the co-existence of these features clouds the association 
between imaging-based measures of paraspinal muscles and 
LBP. Characterisation of the natural presentation of paraspi-
nal muscle size and composition in asymptomatic individu-
als is critical to define pathological values. Muscle imaging 
studies rarely include asymptomatic controls (matched for 
confounders known to impact muscle features), and this is 
strongly recommended in future research.

Measurement of paraspinal muscles 
and implications for interpretation

Imaging modalities

Paraspinal muscle morphology (e.g. CSA) has been evalu-
ated using ultrasound imaging (US), CT, and MRI [2, 4, 6, 
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90]. CT and MRI enable assessment of paraspinal muscle 
composition (e.g. fatty infiltration) [2, 4, 90], and US echo-
intensity has been used as an indicator of intra-muscular fat 
and connective tissue [91, 92].

Ultrasound imaging

US is easily accessible, affordable, and enables real-time 
imaging, which allows for evaluation of some aspects of 
muscle function. US has been widely used to assess contrac-
tion of paraspinal and other trunk muscles (e.g. thickness 
change from rest to a contracted state) in different positions 
[93, 94]. US has several methodological limitations. Com-
pared to CT and MRI, US has lower image quality/contrast 
and measurement reliability [95–98]. Reliable identification 
of muscle borders and spinal landmarks is difficult, espe-
cially for structures that are parallel to the US beam (e.g. 
spinous process), and in overweight or older adults [97, 98].

Computerised tomography

CT has been used to assess paraspinal muscle morphology, 
composition, and density. Density provides an expression 
of muscle degeneration reflected by the number of muscle 
fibres, area of muscle fibres, contractile material plus fat, 
and connective tissue [81]. Although this technique has good 
intra- and inter-rater reliability [81, 99], comparison between 
different CT equipment is uncertain, and the placement of 
regions of interest (ROI) for density measurement within the 
muscle remains arbitrary. Selection of ROI placements that 
reflect muscle tissue is difficult in patients with severe fatty 
infiltration. Tissue contrast and resolution for paraspinal 
muscle are lower in CT than MRI, which impacts reliabil-
ity [100]. CT involves radiation exposure, but measures can 
be readily made from images collected for other purposes, 
enabling analysis of large population-based datasets [81].

Magnetic resonance imaging

MRI is the gold standard for examination of the integrity, 
size, and composition of paraspinal muscle because of its 
superior resolution, soft tissue contrast, visualisation of 
spinal landmarks, and measurement reliability [100–104]. 
This method has potential for automated segmentation in 
post-processing [105]. Measures such as MR spectroscopy 
can detect metabolic status and composition of paraspinal 
muscles [106, 107]. Although MR spectroscopy measures 
correlate with histological findings from muscle biopsies, 
the method is technically demanding, and affected by sam-
pling error, acquisition parameters, field strength, and arbi-
trary ROI placement [107].

Care should be taken with comparison of results and their 
interpretation between studies that have employed different 

imaging modalities (US vs. CT vs. MRI). Few studies have 
examined the relationship between modalities, and outcomes 
differ between modalities [100, 108, 109]. Multiple issues 
might explain differences. For instance, variation in patient 
positioning used for each modality (e.g., prone vs. supine) 
can change lumbar spine curvature which may affect meas-
ures. Comparisons are challenged by variations in measure-
ment techniques, software, and methods used to segment 
paraspinal muscle or define ROIs.

MRI assessment of paraspinal muscle 
composition and morphology

Qualitative schemes have been used to grade the degree 
of paraspinal muscle fatty infiltration using MRI [52, 110, 
111]. Although intra-rater (Kappa = 0.51–0.86) [52][111] 
and inter-rater reliability (Kappa = 0.58–0.85) is acceptable 
[52, 110], their scale definitions vary (e.g. 3–5-point scales). 
For instance, “normal” is defined as either 0–10% of intra-
muscular fat or no fat, and 10–50% fat can indicate slight or 
moderate fat [52, 110]. The Goutallier Classification System, 
developed to assess rotator cuff fatty infiltration, has also 
been adapted to evaluate lumbar multifidus fatty infiltration 
[112]. Visual inspection using a grid and counting the num-
ber of points touching fat and muscle tissue showed poor-
to-moderate inter-rater reliability (ICCs = 0.33–0.76) [113]. 
Although qualitative visual assessments are less time-con-
suming than quantitative measures, they lack precision, have 
lower reliability, and are unsatisfactory in adolescents [52].

Total muscle CSA, fat CSA, and functional CSA (FCSA, 
area of lean muscle mass) are among the most commonly 
used MRI quantitative measurements of paraspinal mus-
cle morphology and composition. These measures involve 
segmentation of the muscles and segregation of the pixels 
representative of fat and lean tissue [2, 4, 90]. Chemical 
shift water and fat images (e.g. DIXON, fat-signal frac-
tion) derived from multi-echo acquisitions provide greater 
delineation of muscle and fat and are the contemporary 
standard imaging sequence for the assessment of paraspi-
nal muscle composition [107, 114, 115]. Fat-signal fraction 
(%FSF =  (Signalfat/[Signalwater +  SignalFat] × 100) provides 
the most accurate assessment of muscle composition [114]. 
The alternative T1- and T2-weighted images remain widely 
used as they are commonly available in population-based 
datasets [71, 116–118]. Quantitative measures of paraspinal 
muscle fatty infiltration using T1- of T2-weighted images 
are reliable [120] and provide accurate calculation of mus-
cle composition when compared to muscle biopsy meas-
urements and spectroscopy [107, 119]. Analysis is most 
often based on a thresholding or histogram function, but 
the definition of “fatty infiltration” varies between studies. 
For example, authors define fatty infiltration as the ratio of: 
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FCSA/CSA [71, 117], total CSA–FCSA [121], CSA fat/total 
CSA [116], and signal intensity of lean muscle/signal inten-
sity of user-defined fat ROI [122]. Such variability hinders 
the comparison between studies. Agreement between par-
aspinal muscle fatty infiltration measurements obtained from 
chemical shift fat and water images compared to T1- and 
T2-weighted images remains to be established.

Definition of the ROI for analysis of lumbar paraspinal 
muscles differs between studies. To facilitate the use of 
standardised spinal muscle measurements, recent studies 
have proposed manual segmentation protocols [101, 120, 
123]. Definition of ROI boundaries is not straightforward 
and depends on the tissue that is included or excluded 
(Fig. 2). For instance, different methods include or exclude 
the fatty infiltration situated outside the epimyseal border 
(epimuscular fat) [50, 123] leading to a systematic differ-
ence in measures of CSA and fatty infiltration between 
methods. Exclusion of epimuscular fat provides an accurate 
assessment of muscle quality within the epimyseal borders 
[123]. Although muscle atrophy is often accompanied by 
intra-fascicular and perifascicular fatty infiltration [124], it is 
not yet clear whether including or excluding epimuscular fat 
(Fig. 2c) provides the most accurate representation of overall 
increase in fatty infiltration and degree of muscle atrophy.

The levels, sides (e.g., bilateral or unilateral), and loca-
tion at which paraspinal muscle CSA and fatty infiltration 
are evaluated differ between studies, adding to measurement 

variability. Paraspinal muscles assessed on a single axial 
image have been measured at mid-disc, the superior or infe-
rior endplate, or the middle of the vertebral body [50, 85, 
117, 118]. Although measures from multiple slices and 3D 
volumetric-based assessment [68, 125, 126] are time-con-
suming, as a general recommendation, paraspinal muscle 
CSA and composition should be averaged between adjacent 
slices to reduce variance. Similarly, fatty infiltration meas-
urements should be assessed and reported for each spinal 
level, as fatty infiltration assessed at a single spinal level 
is not representative of the entire lumbar spine muscula-
ture [51]. Potential for level-specific changes, as have been 
observed for muscle CSA, should be considered for specific 
LBP presentations. Considering the unique innervation of 
multifidus and variations in morphology between spinal 
levels, bilateral paraspinal muscle measurements should be 
obtained at the pathological level (e.g., mid-disc or endplate 
of the same level) [87], and disc level below the pathology, 
unless more extensive measures are warranted by the spe-
cific pathology.

Highly reliable, quantitative MRI techniques to assess 
paraspinal muscle morphology and composition are time-
consuming and not always feasible. Furthermore, the use 
of custom and proprietary image analysis software with 
insufficient descriptions of measurement protocols hinders 
replication and interpretation. Most MRI manual segmenta-
tion techniques are tedious and rater-dependent, providing 
an incentive for the development of automated segmentation 
methods. Atlas-based algorithms referenced to a standard 
coordinate system are well established in other domains (e.g. 
brain, heart) [127–130]. Development of automated algo-
rithms likely represents the next generation of advancements 
in paraspinal muscle phenotyping [105].

New methods of fMRI [85] and MR elastography (MRE) 
[131] hold promise for characterisation of metabolic and 
viscoelastic properties. They may also provide non-invasive 
in vivo measures of paraspinal muscle function in differ-
ent states (e.g., rest, contraction, stretching). New methods 
require validation and consideration of factors that may 
affect interpretation.

Recommendations towards standardisation 
of imaging‑based measures of paraspinal 
muscles

Based on the issues outlined here, design of studies using 
image-based measures requires consideration of patho-
physiology, confounders, and measurement issues to ensure 

Fig. 2  Multifidus and erector spinae cross-sectional area (CSA) meas-
urements from axial T2-weighted image. (a) and (b) the right and left 
CSA measurements of the multifidus muscle at the L3-L4 level. (c) 
the erector spinae CSA measurement when epimuscular fat “tent” 
between the muscle and facia is included in the ROI. (d) the erector 
spinae CSA measurement when epimuscular fat “tent” between the 
muscle and facia is excluded from the ROI
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validity and interpretation of data. This would also maximise 
the potential to compare and combine data between studies. 
Recommendations for imaging-based measures of paraspinal 
muscles were developed and evaluated by expert consensus 
using a Delphi approach.

The steering committee developed 10 recommendations 
across the domains of “Physiology and pathophysiology”, 
“Consideration of confounders”, and “Measurement issues”. 
The literature review and recommendations were initially 
evaluated in detail by three experts (Drs Dino Samartzis, 
Pradeep Suri, and Jeffrey Jarvik). After minor modification, 
recommendations were presented to the ISSLS Degenerative 
Spinal Phenotypes Group by the author team at the 2021 
annual meeting of the International Society for the Study of 
the Lumbar Spine. In a first Delphi round, a survey was then 
sent to the 34 members of this group. The survey listed each 

recommendation. For each, experts could indicate whether 
they agreed or disagreed with the recommendation and in 
each case, they could provide comments. An a priori agree-
ment threshold was set at 80%, and only recommendations 
with < 80% agreement would be considered in a second Del-
phi round.

Twenty-six responses were received (76%). All recom-
mendations achieved agreement of 88% or greater, and no 
recommendations required reassessment in a second Delphi 
round. The author team considered all written comments and 
edited the recommendations at a consensus meeting. Table 2 
presents the final list of recommendations. The original and 
revised wording for each recommendation and the % agree-
ment achieved using the Delphi approach are presented in 
Supplementary online material 1.

Table 2  Recommendations towards standardisation of imaging-based measures of back muscles

Domain Recommendation

Physiology and pathophysiology 1. In general, because of incomplete understanding of muscle changes and variation in distribution of muscle 
changes between pathologies, measures should be made at all levels whenever possible

• Measures should not be averaged across all levels, and morphological differences (e.g., fat distribution and 
size) that are expected between levels should be accounted for in the analysis

• Results from measures that are only made at the same single spinal level for all participants should be 
interpreted with caution because muscle changes would not be expected to be uniformly represented in this 
localised manner except in specific circumstances (e.g., participant group selected with uniform pathology at 
a specific level)

2. If pathology is known, and the question is related to the specific identified pathology, then measurement 
levels should be planned with careful consideration of the expected distribution of muscle changes

• At minimum, paraspinal muscle measurements should be obtained at the level of pathology and the level 
below

• For multi-level pathology, measurements should be obtained with respect to all relevant levels
3. If pathology is not known, or not relevant to the question (e.g., investigation of non-specific low back pain), 

then measures should be made at all levels
4. Dependence of muscle changes on time course requires control or stratification by time if possible
• At minimum data should be considered separately for participants with acute vs. chronic presentations
• Choice of control or stratification based on duration should be defended
• It is important to note that time of onset of low back symptoms might not reflect onset of pathology
• Results from studies that combine data for participants with low back pain of different duration should be 

interpreted with caution
5. Changes may affect specific muscle fascicles within the cross-sectional image and not the whole muscle 

area at a spine level
Consideration of confounders 1. Features that potentially influence measures require consideration

• Features known to influence measures should be controlled analytically or by design, including age, sex
• Features that might influence measures that should also be considered include body composition (e.g., body 

mass index), physical activity, pathology (if known)
2. Measures made to quantify the effect of exercise training need to consider the expected nature and distribu-

tion of muscle changes with respect to the exercise modality and would generally involve measurement of all 
levels

3. In the absence of reference data, imaging studies of clinical groups should consider (depending on the ques-
tion) inclusion of control groups of participants without the condition with consideration of the potential 
confounders known to impact muscle features
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